Solar Wind Graphing and Analysis

Lesson Plan - Solar Data Plots and Graphing

Time:

3 hours

Objective:

Students will complete activities discovering the correlation between the temperature and speed of solar wind. Students will be able to plot data on a semi-log graph, analyze results from the graph, and then draw conclusions.

Content Standards:

For grades 7th through 12th (can be adapted to lower grade levels)

<u>K-4</u>:

- Earth and Space Science Standards 2 and 3;
- Science and Technology 2 and 3;
- · Physical Science full standard

Grades 5-8:

- Physical Science 2;
- Science as Inquiry 1 and 2
- Science and Technology 1 and 2

Grades: 9-12:

- Science as Inquiry 1 and 2;
- Earth and Space Science Standards 1;
- · Science and Technology 1 and 2;
- · History and Nature of Science Standards full standard

Equipment, Materials and Tools:

For the teacher:

- Photocopier (for transparencies and copies)
- Overhead projector
- · Questions and answers

For the students:

- Transparency copy of Figure 6 (semi-log graph worksheet) (one per group or pair)
- Transparency marker (one per group or pair)
- Figure 4 Velocity and Temperature Data Pages (7 pages of various months and days) (one per group or pair)

Materials to reproduce:

- Figure 4: Speed and Temperature Data Pages (7 pages of various days in 1999 and 2000)
- Figure 6: (semi-log graph worksheet) make transparency
- Figure 7: Solar Wind Plot (ACE/SWEPAM data Sheet)

Additional materials for the teacher:

- Facts for the Teacher: Part I (Auroras)
- Facts for the Teacher: Part II (Multicultural Mythology)

Procedures:

PART 1:

Explain to students the objective of this lesson – the students will learn how to read and analyze solar wind data relayed from a satellite. The students will then graph specific solar wind speeds and temperatures on semi-log graph paper, then analyze and discuss results.

PART 2:

- A. Hand out copies of Solar Wind Plot Figure 7 (ACE/SWEPAM data sheet) (one per student)
- B. Review and discuss each part of the Plot (Plot = a measurement of solar wind properties):
 - Na/Np = percent of Helium in the solar wind. (More precisely the ratio of Helium to Hydrogen. Note the solar wind is mostly Hydrogen.)
 - N = density,
 - a = alpha particles which are Helium with two electrons removed,
 - p = protons which are Hydrogen with one electron removed.
 - Bz (nT) = indicates whether the magnetic field within the solar wind is pointing north or south. If the magnetic field is pointing south it will have a negative charge. When a solar wind has a negative charge, there is a higher chance the solar wind will effect the Earth's system.
 - (nT = nano-tesla, a unit of magnetic field strength)
 - Vp = speed of solar wind (this will be plotted on the x-axis of a semi-log graph in part 4 of this lesson)
 - Tp = temperature (measured in Kelvin) of solar wind (this will be plotted on the y-axis of a semi-log graph in part 4 of this lesson)
 - B (nT) = measures the strength of the magnetic field within the solar wind.

Np (cm⁻³) = Density of Hydrogen in the solar wind. The number of protons (per unit volume) centimeters

PART 3:

- A. Hand out Figure 6, transparency of Semi-log Graph Sheet (one per group or pair)
 - Guide students in the process of labeling the Semi-log Graph transparency.
 - Instruct the students to title the graph Solar Wind Temperature and Speed
 - Instruct students to label the y-axis as *Temperature in Kelvin* (K^0). Explain the scientific notation on this y-axis:
 - y-axis starts with 10,000, this represents 1 x 10^4 , each line going up increases, starting with 2 x 10^4 , 3 x 10^4 , 4 x 10^4 and so on. Thus, 100,000 represents 1 x 10^5 , each line going up increases 2 x 10^5 , 3 x 10^5 , 4 x 10^5 and so on. 100,000 is 1 x 10^6 .
 - Instruct the students to label the x-axis as Speed in kilometers per second (km/s) Explain that the x-axis increases in value by 20:
 - x-axis starts with 300, each line represents an increase of 20: **300**, 320, 340, 360, 380, **400**, 420, 440, 460, 480, **500** etc.

PART 4:

- A. Hand out Figure 4: Speed and Temperature Data Pages (one per group or pair)
 - Explain to students they are now specifically reading solar wind speed and temperature data from a given day in 1999 or 2000.
 - Ask students to look for a possible correlation between speed and temperature.
 - Students should work in small groups of 3 or in pairs to complete graph. Each group or pair should be given a different symbol to use to show their solar wind information on the graph (i.e. "+", "x", ".", "#", etc.).
 - Each group or pair of students should use a different color marker to distinguish data more clearly between each transparency graph.

PART 5:

- A. After each group has completed the graph, each group or pair will place their completed graph on the overhead.
- B. Ask students to locate:
 - the highest temperature,
 - highest speed,
 - · lowest temperature, and
 - · lowest speed on their graph,
 - have students write it on the board under their year/day (example: 1999/364: highest temperature 3 x 10⁵).

PART 6:

- A. After each group or pair has discussed their graph, collect all completed graphs; overlay each graph consecutively on the overhead projector beginning with 1999/364.
- B. Ask students if they notice any patterns, similarities, differences, or points of significance. (*Note: This is the vital point in making sure all groups use different color markers when graphing onto transparency)

PART 7:

Analysis and conclusions: Questions for reflection

- Is there a relationship between speed and temperature of solar wind?
 (*Note: This is not an absolute but only a general trend higher speeds mean higher temperature and lower speeds mean lower temperatures)
- 2. What deductions can be made with all the graphs put together?
- 3. What does this pattern tell us?
- 4. What conclusions can be made after looking at this data?
- 5. Can you use this graph as a predictive tool when observing solar wind activity? (Reminder: This is a general trend not an absolute of how temperature and speed interact with one another, therefore only general predictions can be made from the data on the graph)
- 6. If the speed of solar wind was 450, what could you predict your temperature to possibly be? (Note: Possible answer 7 x 10⁴)

Materials for Activity:

Figure 1: Solar Wind Spectrogram from ACE

Figure 2: Solar Wind Spectrogram from Genesis

Figure 3: Solar Wind Spectrogram from Ulysses

Figure 4: Velocity and Temperature Data (sheet 1)

Year	DAY/TIME	V	Т
1999	364.021	370	3.9 e+04
1999	364.062	370	4.5 e+04
1999	364.104	380	7.0 e+04
1999	364.146	380	8.9 e+04
1999	364. 187	370	8.5 e+04
1999	364.229	380	1.1e +05
1999	364.271	380	1.2e +05
1999	364.312	400	1.3e +05
1999	364.354	390	1.1e +05
1999	364.396	390	1.1e +05
1999	364.437	390	9.3e +04
1999	364.479	380	7.4e +04
1999	364.521	390	6.5e +04
1999	364.562	400	5.3e +04
1999	364.604	390	4.9e +04
1999	364.646	390	5.4e +04
1999	364.687	420	7.8e +04
1999	364.729	450	9.9e +04
1999	364.771	550	2.3e +05
1999	364.812	600	3.2e +05
1999	364.854	610	3.0e +05
1999	364.896	650	3.7e +05
1999	364.937	640	4.1e +05
1999	364.979	630	4.2e +05

Note: DAY/TIME given as Day of year plus fraction of day.

Solar wind speed V in km/s.

Figure 4: Velocity and Temperature Data (sheet 2)

year	DAY/TIME	V	Т
1999	365.021	660	4.7e +05
1999	364.062	640	3.8e +05
1999	365.104	650	3.3e +05
1999	365.146	660	4.0e +05
1999	365 .187	700	4.0e +05
1999	365.229	660	3.1e +05
1999	365.271	660	2.9e +05
1999	365.312	680	3.2e +05
1999	365.354	660	3.1e +05
1999	365.396	670	3.2e +05
1999	365.437	630	2.2e +05
1999	365.479	620	2.2e +05
1999	365.521	620	2.2e +05
1999	365.562	640	2.3e +05
1999	365.604	650	2.7e +05
1999	365.646	650	2.7e +05
1999	365.687	630	2.2e +052.4e +05
1999	365.729	640	1.9e +052.
1999	365.771	640	3.6e +05
1999	365.812	650	2.9e +05
1999	365.854	670	2.8 e+05
1999	365.896	690	3.6 e+05
1999	365.937	670	2.9 e+05
1999	365.979	670	3.0 e+05
	V/TIME given as Day of year		

Note: DAY/TIME given as Day of year plus fraction of day.

Solar wind speed V in km/s.

Figure 4: Velocity and Temperature Data (sheet 3)

Year	DAY/TIME	V	Т
2000	1.021	670	2.5 e+05
2000	1.062	700	2.8 e+05
2000	1.104	710	3.1 e+05
2000	1.146	720	3.5 e+05
2000	1.187	710	3.6 e+05
2000	1.229	720	3.4 e+05
2000	1.271	750	3.4 e+05
2000	1.312	760	3.4 e+05
2000	1.354	750	2.8 e+05
2000	1.396	770	2.6 e+05
2000	1.437	730	2.4 e+05
2000	1.479	730	2.3 e+05
2000	1.521	740	2.2 e+05
2000	1.563	730	2.0 e+05
2000	1.604	720	2.0 e+05
2000	1.646	720	1.8 e+05
2000	1.688	710	1.9 e+05
2000	1.729	710	1.8 e+05
2000	1.771	740	2.2 e+05
2000	1.813	720	2.1 e+05
2000	1.854	710	1.8 e+05
2000	1.896	720	1.7 e+05
2000	1.938	700	1.9 e+05
2000	1.979	700	1.9 e+05

Note: DAY/TIME given as Day of year plus fraction of day.

Solar wind speed V in km/s.

Solar wind temp. T in K.

Figure 4: Velocity and Temperature Data (sheet 4)

Year	Date/Time	V	Temp
2000	2.021	700	1.9 e+05
2000	2.063	700	1.9 e+05
2000	2.104	690	1.8 e+05
2000	2.146	680	1.7 e+05
2000	2.188	690	1.7 e+05
2000	2.229	690	1.9 e+05
2000	2.271	670	1.9 e+05
2000	2.313	670	1.9 e+05
2000	2.354	660	1.9 e+05
2000	2.396	660	1.8 e+05
2000	2.438	670	2.1 e+05
2000	2.479	680	2.4 e+05
2000	2.521	710	2.4 e+05
2000	2.563	660	2.0 e+05
2000	2.604	660	2.1 e+05
2000	2.646	690	1.9 e+05
2000	2.688	680	2.1 e+05
2000	2.729	680	1.6 e+05
2000	2.771	670	1.4 e+05
2000	2.813	680	2.0 e+05
2000	2.854	670	1.9 e+05
2000	2.896	670	1.8 e+05
2000	2.938	660	1.3 e+05
2000	2.979	670	1.1 e+05

Note: DAY/TIME given as Day of year plus fraction of day.

Solar wind speed V in km/s.

Figure 4: Velocity and Temperature Data (sheet 5)

Year	DAY/TIME	V	Т
2000	3.021	650	1.2 e+05
2000	3.063	620	1.0 e+05
2000	3.104	630	1.1 e+05
2000	3.146	620	1.1 e+05
2000	3.188	620	1.4 e+05
2000	3.229	610	1.3 e+05
2000	3.271	600	1.3 e+05
2000	3.313	590	1.4 e+05
2000	3.354	590	1.7 e+05
2000	3.396	590	1.5 e+05
2000	3.438	600	1.5 e+05
2000	3.479	590	1.4 e+05
2000	3.521	580	1.1 e+05
2000	3.563	560	1.3 e+05
2000	3.604	540	1.3 e+05
2000	3.646	550	9.5 e+04
2000	3.688	540	1.0 e+05
2000	3.729	550	1.2 e+05
2000	3.771	540	1.5 e+05
2000	3.813	580	1.7 e+05
2000	3.854	570	1.9 e+05
2000	3.896	570	1.7 e+05
2000	3.938	590	1.5 e+05
2000	3.979	590	1.6 e+05

Note: DAY/TIME given as Day of year plus fraction of day.
Solar wind speed V in km/s.

Figure 4: Velocity and Temperature Data (sheet 6)

Year	DAY/TIME	V	Т
2000	4.021	590	1.5 e+05
2000	4.062	590	1.6 e+05
2000	4.104	590	1.5 e+05
2000	4.146	590	1.4 e+05
2000	4.187	600	1.4 e+05
2000	4.229	600	1.6 e+05
2000	4.271	590	1.6 e+05
2000	4.312	600	1.5 e+05
2000	4.354	630	2.5 e+05
2000	4.396	630	2.4 e+05
2000	4.437	600	1.5 e+05
2000	4.479	600	1.3 e+05
2000	4.521	590	1.6 e+05
2000	4.562	580	1.8 e+05
2000	4.604	560	1.8 e+05
2000	4.646	570	1.2 e+05
2000	4.687	570	1.0 e+05
2000	4.729	530	1.0 e+05
2000	4.771	550	9.5 e+04
2000	4.812	560	8.6 e+04
2000	4.854	540	9.9 e+04
2000	4.896	510	1.1 e+05
2000	4.937	520	9.8 e+04
2000	4.979	520	1.2 e+05

Note: DAY/TIME given as Day of year plus fraction of day.
Solar wind speed V in km/s.
Solar wind temp. T in K.

Figure 4: Velocity and Temperature Data (sheet 7)

Year	DAY/TIME	V	Т
2000	5.021	530	8.3 e+04
2000	5.062	520	7.2 e+04
2000	5.104	540	7.8 e+04
2000	5.146	510	9.8 e+04
2000	5.187	510	9.5 e+04
2000	5.229	520	9.3 e+04
2000	5.271	510	1.3 e+05
2000	5.312	520	1.4 e+05
2000	5.354	540	1.1 e+05
2000	5.396	520	1.1 e+05
2000	5.437	510	1.3 e+05
2000	5.479	510	1.5 e+05
2000	5.521	520	1.4 e+05
2000	5.562	520	1.6 e+05
2000	5.604	530	1.5 e+05
2000	5.646	520	1.6 e+05
2000	5.687	510	1.6 e+05
2000	5.729	520	1.6 e+05
2000	5.771	530	1.4 e+05
2000	5.812	540	1.1 e+05
2000	5.854	520	1.7 e=05
2000	5.896	520	1.5 e+05
2000	5.937	510	1.5 e+05
2000	5.979	520	1.3 e+05

Note: DAY/TIME given as Day of year plus fraction of day.

Solar wind speed V in km/s.

Figure 5: ACE/SWEPAM graph

Figure 6: Semi-log Graph Paper

Figure 7: ACE/SWEPAM Data Sheet

Assessment:

- Can the student complete the plots on graph in a small group or pair?
- Did the student participate in class discussion or ask questions?
- Can the student take a short quiz and/or complete worksheet of questions on solar wind graphing and analysis?
- Ask students to write a paragraph on how temperature and speed of solar wind interact with each other.
- Ask students to make journal entries during the lesson.

Teacher l	Key to Student Worksheet: Solar	Wind Graphing and	Analysis Questions:
			_
	ote: The following questions and ans		
	at is solar wind?		
	Solar wind is charged particles emitt can expand as necessary.	ed from the Sun. An	swers will vary-the teacher
•	at is the measure of a moderate sola The measurements of moderate and sheets.		
3. Wha	at effect does temperature have on i		
	Usually the higher the temperature, v is the magnitude of the solar wind		
•	Instruments on satellites collect sola	r wind samples.	
	y is the temperature in Kelvin and no		atau (16 a a a a a a a a a a a a a a a a a a a
	Kelvin (K ⁰) is the unit used for high t at are the units that define velocity?	emperatures in the s	cientific community.
	Kilometers/second (km/s) are the ur	its used to define ve	locity.
Matabiaa			
Matching:			
1. <u>e</u> B	a. measures whether the south	magnetic field within th	e solar wind is pointing north or
2h Na	/Np b. nano-tesla		
3a Bz	c. speed		
4. <u>g</u> T	d. horizontal (plane of gra	ph)	

e. strength of magnitude of solar wind

h. percent of helium in solar wind

f. vertical (plane of graph

g. temperature in Kelvin

5. __b__ nT

6. __c__ V

7. __d__ *x*-axis

8. <u>__f__</u> y-axis

Student Worksheet: Solar Wind Graphing and Analysis Questions:

Name	:		Period:	Date:	
1. Wha	at is solar wir	nd?			
2. Wha	at is the meas	sure of a moderate solar wind	d storm? A major sto	orm?	
3. Wha	at effect does	temperature have on increa	sing speed?		
4. How	v is the magn	itude of the solar wind meas	ured?		
5. Why	/ is the tempe	erature in Kelvin and not Cels	sius?		
6. Wha	at are the uni	ts that define velocity?			
<u>Matchi</u>	ing:				
1	B	a. measures whether the n south	nagnetic field within th	e solar wind is pointing north o	or
2	Na/Np	b. nano-tesla			
3	Bz	c. speed			
4	Т	d. horizontal (plane of grap	h)		
5	nT	e. strength of magnitude of	f solar wind		
6	V	f. vertical (plane of graph			
7	<i>x</i> -axis	g. temperature in Kelvin			
8.	v-axis	h. percent of helium in sola	ar wind		